Final Year M.Sc., Degree Examinations September / October 2015
 (Directorate of Distance Education)
 MATHEMATICS
 Paper - PM 10.08: DPB 540: NUMERICAL ANALYSIS

Time: 3hrs.]
[Max. Marks: 70/80

Instructions to candidates:

i) Students who have attended 30 marks IA scheme will have to answer for total 70 Marks.
ii) Students who have attended 20 marks IA scheme will have to answer for total 80 Marks.
iii) Answer any FIVE questions for both 70-80 marks scheme and Question No. (9) in Section - B is compulsory for 80 marks.

SECTION - A

1. a) Derive the Newton-Raphson scheme to obtain the roots of an equation $f(x)=0$. use it to find an approximate root of the equation $x^{3}-5 x+1=0$.
b) Describe Bairstow's method to extract a quadratic factor of the form $x^{2}+p x+q$ from a polynomial of degree n.
2. a) Find the solution of $83 x+11 y-4 z=95$

$$
\begin{aligned}
& 7 x+52 y+13 z=104 \\
& 3 x+3 y+29 z=71
\end{aligned}
$$

by performing four iterations using any one of iteration matrix.
b) Explain successive over relaxation method to solve the system $A x=b$
3. a) Find all the eigen values and the corresponding eigen vectors of the matrix

$$
A=\left(\begin{array}{ccc}
1 & \sqrt{2} & 2 \\
\sqrt{2} & 3 & \sqrt{2} \\
2 & \sqrt{2} & 1
\end{array}\right) .
$$

b) Find all the eigen values of the following matrix using Given's method

$$
A=\left(\begin{array}{lll}
1 & 6 & 0 \tag{8+6}\\
6 & 2 & 1 \\
0 & 1 & 3
\end{array}\right)
$$

4. a) Discuss the convergence criteria of Hermite interpolation polynomial of degree $\leq 2 n+1$.
b) Evaluate $I=\int_{0}^{1} \frac{2 x}{1+x^{4}} d x$ using Gauss Legendre and Gauss Chebyshev integration formula.
5. a) Derive Lagrange's interpolation formula for the given data points
$\left(x_{i}, y_{i}\right), i=1,2, \ldots n$
b) Obtain the least square approximation polynomial of degree one and two for $f(x)=\sqrt{x}$ on $[0,1]$.
6. a) Determine the cubic spline $S(x)$ for the interval $[2,3]$ for the following tabulated values of x and y.

X	1	2	3	4	5
Y	10	17	36	73	134

b) Derive cubic spline interpolation polynomial.
7. a) Derive Runge-Kutta $2^{\text {nd }}$ order method to find the numerical solution to an IVP $y^{\prime}=f(x, y), x_{0},=y_{0}$
b) Use Adams predictor-corrector method to find $y(0,8)$ and $y(1,0)$ for an IVP, $y^{\prime}=x^{2}+y, y(0)=1$, choose $h=0.2$.
8. a) Solve the Laplace equation $u_{x x}+u_{y y}=0$ by employing five point formulae which satisfies the following boundary conditions.

$$
\begin{aligned}
& u(0, y)=0 \quad u(x, 0)=0 \\
& u(x, 1)=100 x, u(1, y)=100 y \text { Choose } h=k=1 .
\end{aligned}
$$

b) Derive Crank - Nicolson implicit formula for solving parabolic partial differential equation $\frac{\delta u}{\delta t}=\frac{\delta^{2} u}{\delta x^{2}}$.

SECTION - B

9. a) Use Secant method to find the real roots of $2 x^{3}+3 x-5=0$, perform four iterations.
b) Evaluate an integral $\int_{0}^{1} \frac{d x}{x^{2}+2 x+2}$ by dividing the given interval into equal $4,6,8$ subintervals using Simpson's $1 / 3^{\text {rd }}$ rule.
