Final Year M.Sc., Degree Examinations

September / October 2015

(Directorate of Distance Education)

MATHEMATICS

Paper – PM 10.07: DPB 530: MEASURE THEORY AND FUNCTIONAL ANALYSIS

Time: 3hrs.] [Max. Marks: 70/80

Instructions to candidates:

- i) Students who have attended 30 marks IA scheme will have to answer for total 70 Marks.
- ii) Students who have attended 20 marks IA scheme will have to answer for total 80 Marks
- iii) Answer any FIVE questions for both 70-80 marks scheme and Question No. (9) in Section B is compulsory for 80 marks.

SECTION - A

- 1. a) Define a Borel Set. For any singleton set $\{x\}$, prove that $m^*\{(x)\}=0$.
 - b) Construct an uncountable set of measure zero.
 - c) If $\{I_n\}$ is a finite covering of open intervals of $Q \cap [0,1]$, show that $\sum l(I_n) \ge 1$. Is this true if $\{I_n\}$ is infinite? (5+4+5)
- 2. a) State Littlewood's three principles and prove any one of them.
 - b) State and prove Fatou's lemma. (8 + 6)
- 3. a) If $f \ge 0$ and measurable, show that \exists a sequence $\{\phi_n\}$ of simple functions such that $\phi_n \uparrow f$.
 - b) Let $f:[a,b] \to R'$ be increasing. Show f' exists a.e., and that $\int_a^b f' \le f(b) f(a)$.
- 4. a) Find the Dini Derivatives of $f(x) = \begin{cases} 0 & x = 0 \\ x \sin \frac{1}{x} & x \neq 0 \end{cases}$ at x = 0.
 - b) Define a function of bounded variation on [a, b]. With usual notations show that T = N + P and f(b) f(a) = P N.

- 5. a) Define a complete metric space. Prove that 1_p , $1 \le p < \infty$ is a complete metric space. Do 1_{∞} is complete? Justify.
 - b) State and prove Banach Fixed point theorem. (8 + 6)
- 6. a) Show that there is no $f: \mathbb{R}^1 \to \mathbb{R}^1$ continuous only at rationals.
 - b) State and prove Lebesgue Covering lemma. (6 + 8)
- 7. a) Prove that the set of all continuous linear operators of a normed linear space into a Banach space is itself a Banach space.
 - b) Show that any two normed linear spaces with the same finite dimension are topologically isomorphic. (8 + 6)
- 8. a) State Hanh Banach theorem. Let M be a closed linear subspace of a normed linear space X and $x_0 \notin M$. If $d = d(x_0, M)$, then show that there exists a functional $f_0 \in X^*$ such that $f_0(M) = 0$ and $f_0(x_0) = 1$ and $||f_0|| = \frac{1}{d}$.
 - b) Prove that the space l_p , $1 \le p < \infty$ is reflexive. Is the space l_1 reflexive? Justify. (8 + 6)

SECTION - B

9. If f is a real continuous function defined on a closed and bounded interval [a, b] and if $\varepsilon > 0$, prove that there exists a polynomial p such that $|f(t) - p(t)| < \varepsilon$ for $a \le t < b$. (10)

* * * * * * *