M.Sc. (Final) Degree Examination August / September 2009 Directorate of Correspondence Course

Mathematics

Paper : PM-10.05 : Complex Analysis (Freshers)

Time: 3 Hours Max. Marks: 80

Note:

https://www.kuvempuonline.com

- 1) Answer any FIVE questions.
- 2) All questions carry EQUAL marks.
- a) If sum and product of two complex numbers are both real, show that the numbers are either real or one is conjugate of the other.
 - b) If $| a_1 | < 1$, $\lambda_1 \ge 0$ for i = 1, 2, n and $\lambda_1 + \lambda_2 + + \lambda_n = 1$, show that $| \lambda_1 | a_1 + \lambda_2 | a_2 + + \lambda_n | a_n | < 1$.
 - State and prove necessary and sufficient condition for f(z) to be analytic.
 (3+3+10)
- 2. a) Find C-R equations in polar form.
 - b) Find the most general harmonic polynomial of the form $ax^3 + bx^2y + cxy^2 + dy^3$ and then determine its harmonic conjugate and analytic function.
 - c) Show that inside the circle of convergence, $\sum_{n=0}^{\infty} a_n z^n$ represents an analytic function f(z) which is infinitely differentiable. (4+4+8)
- 3. a) State and prove Abel's limit theorem.
 - b) Show that when a circle is transformed into a circle under the map W = ¹/₂, the centre of the original circle is never mapped onto the centre of the image circle.
 - c) Show that cross ratio is preserved under bilinear transformation.
- a) Find the bilinear transformation which maps the points z = 1, i, -i respectively onto the points W = i, 0, -i. Find the image of the region I z I ≤ I from the transformation.
 - b) State and prove Cauchy's theorem for a rectangle.
 - c) State and prove Cauchy's inequality.

(4+7+5)

- a) Prove that the function which is analytic in the whole plane and satisfy the inequality I f (z) I < I z I, for some 'm' and all sufficiently large I z I reduces to a polynomial.
 - b) State and prove Taylor's Theorem.
 - c) State and prove Schwarz Lemma.

(5+6+5)

- a) State and prove the argument principle. Give the interpretation of the name argument.
 - b) Let f(z) be analytic in 0 < 1z a < 0 and has a Laurent's series expansion (as applicable to the annulus r < 1z a < 0, with r = 0 and R = 0),

$$f(z) = \sum_{-\infty}^{\infty} a_k (z - a)^k.$$

Then show that

https://www.kuvempuonline.com

- f(z) has a removable singularity at z = a if and only if a_k = 0, k < 0 i.e., if and only if its singular part is zero.
- (ii) f(z) has a pole at z = a of order m if and only if $a_{m} \neq 0$ and $a_{k} = 0$ for k < -m.
- (iii) f(z) has a essential singularity at z = a if and only if $a_m \neq 0$ for infinitely many negative integers m. (6+10)
- 7. a) State Rouche's Theorem and use it to show that the equation $e^z = az^n$ (if a > e) has n roots inside the circle |z| = 1.
 - b) Using residue theorem, solve any two of the following:

(i)
$$\int_{0}^{2\pi} \frac{d\theta}{1 - 2p \cos\theta + p}$$
 (0 < P < 1)

(ii)
$$\int_{-\infty}^{\infty} \frac{x^4}{x^6 + a^6} dx (a > 0)$$

(iii)
$$\int_0^\infty \frac{\cos ax}{(x^2 + b^2)^2} dx \ (a > 0, b > 0)$$

(6+10)

8. a) Derive Poison's Integral formula.

b) Show that
$$\pi$$
 cot π $z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$ (10+6)