QP 56911 Page No...... 1

Final Year M.Sc. Degree Examinations December 2017

(Directorate of Distance Education)

MATHEMATICS

Paper - PM 10.05: DPB 510: COMPLEX ANALYSIS

Time: 3 hrs] [Max. Marks: 70/80

Instructions to candidates:

- 1. Students who have attended 30 marks IA scheme will have to answer for total 70 marks.
- 2. Students who have attended 20 marks IA scheme will have to answer for total of 80 marks.
- 3. Answer any FIVE questions from Section A. Each question carries 14 marks for both 70 80 marks scheme and question No. 9 in Section B is compulsory for 80 marks scheme.

PART - A

- 1. a) Prove that $\left| \frac{a-b}{a-\overline{a}b} \right| < 1$, if |a| < 1 and |b| < 1.
 - b) Obtain the spherical representation of the extended complex plane.
 - c) Show that Z and Z^1 corresponds to diametrically opposite points on the Riemann sphere, if and only if $Z Z^{-1} = -1$. (4 + 6 + 4)
- 2. a) Show that inside the circle of convergence, power series represents an analytic function f(z) which is infinitely differentiable.
 - b) State and prove Abel's limit theorem.
 - c) If f(z) = u + iv is analytic and $u v = e^x(\cos y \sin y)$. Find f(z) in terms of Z. (5 + 5 + 4)
- **3.** a) Prove that product of any two bilinear transformation is again bilinear.
 - b) Prove that the cross ratio (Z_1, Z_2, Z_3, Z_4) is real if and only if four points lies on the circle of a straight line.
 - c) Find the bilinear transformation which carries $\{0, i, -i\}$ into $\{1, -1, 0\}$. (4 + 6 + 4)
- **4.** a) State and prove Cauchy theorem for rectangle.
 - b) State and prove Liouville theorem. Deduce fundamental theorem of algebra.

					1							1	
- (റ	n	Ť	a	1							1	

QP 56911 Page No...... 2

c) Verify Cauchy's integral theorem for the function $f(z) = z^2$ defined in the region bounded by the triangle with vertices (0, 0), (3, 0) and (3, 1). (5 + 5 + 4)

- **5.** a) State and prove maximum modulus principle and use it to derive Schwartz's lemma.
 - b) Define removable, isolated and essential singularity. Give an example for each show that an isolated singularity of 'f' is removable iff $\lim_{z \to a} (z a) f(z) = 0$.
 - c) Expand $\log(1+z)$ in a Taylors series about z=0 and determine the region of convergence for the resulting series. (5+5+4)
- **6.** a) Show that the successive derivatives of an analytic function at any point can never satisfy $|f^n(z)| > n!n^n$.
 - b) Prove that if f(z) is meromorphic inside a closed contour C and has no zeros on C then $\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = N P$, where, N is the number of zeros and P is the number of poles.
 - c) Prove that the co-efficient in the Laurentz expansion of $f(z) = \sin\left(z + \frac{1}{z}\right)$ power series of Z are givne by the formula, $a_n = \frac{1}{2\pi} \int_{C}^{2\pi} \cos n\theta \sin(2\cos\theta) d\theta$ for n = 1, 2. (4 + 6 + 4)
- 7. a) State Laurent's theorem. Classify singularities using Laurent's theorem.
 - b) Evaluate the following

i)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^4}$$
 ii) $\int_{0}^{\infty} \frac{\cos ax}{\left(a^2+x^2\right)^2} dx$ $a > 0$ (5 + 9)

- **8.** a) State and prove Weierstrass theorem.
 - b) Derive Poisson's formula for a harmonic function.

c) Show that
$$\sin \pi z = \pi z \prod_{r=1}^{\infty} \frac{(1-z^2)}{n^2}$$
 (5 + 5 + 4)

PART - B

9. a) Show that $f(z) = \sin z$ is analytic and $f'(z) = \cos z$.

b) Expand
$$f(z) = \frac{1}{(z+1)(z+3)}$$
 in Laurent's series valid for the regions
$$i) \ 1 < |z| < 3 \quad ii) \ 0 < |z+1| < 2 \tag{6+4}$$