9 + 6

https://www.kuvempuonline.com

Q.P. Code - 56923

Previous M.Sc. Degree Examination OCTOBER/NOVEMBER 2014

(Directorate of Distance Education)

Physics

(DPA 530) Paper III - SOLID STATE PHYSICS

Time: 3 Hours] [Max. Marks: 75/85]

Instructions to Candidates:

https://www.kuvempuonline.com

- 1) Answer any **FIVE** questions from Parts **A**, **B** and **C** without omitting any Part.
- 2) Part **D** is **compulsory** for those who appear for paper with maximum marks 85.

PART – A

- 1. (a) Describe the seven system of crystals with suitable diagrams. 10
 - (b) Derive Bragg's law of X-ray diffraction in crystals. Discuss with the help of Ewald's sphere.
- 2. (a) Describe Laue photograph. 7
 - (b) Explain metallic, ionic, valence and van der waal's type of bonding in crystals.
 8
- (a) Discuss Langevin theory of Paramagnetism.
 - (b) Write a note on Ferromagnetism.

PART - B

- 4. (a) Explain qualitatively specific heat in super conducting stage. 7
 - (b) Outline the Sommerfeld's theory of electrical conductivity in metals. 8
- 5. (a) Mention dielectric properties.
 - (b) Obtain Clausius-Mossotti relation.
- (a) Discuss the paramagnetism of free electrons.
 - (b) Explain thermal conductivity in metals. Discuss Wiedemann-Franz law and Hall effect.

1 P.T.O.

https://www.kuvempuonline.com

Q.P. Code - 56923

PART - C

- 7. (a) List the properties of Bloch function.
 5
 (b) Explain the differences between metals, insulator and intrinsic semiconductors with examples.
 10
- 8. (a) Explain line dislocation. 5
 - (b) Obtain an expression for the energy of a dislocation.
- 9. (a) Write a note on Crystal growth by solution and mention different types of crystal growth. 5
 - (b) Discuss the relative advantages and limitations of using X-ray and neutron diffraction in the study of crystal structure.

PART - D

10. Answer any TWO of the following:

https://www.kuvempuonline.com

 $2 \times 5 = 10$

- (a) Find the reciprocal lattice of a bcc lattice.
- (b) Derive Lorentz-Lorenz relation in dielectrics.
- (c) Derive an expression for effective mass of hole and electrons.