Previous Year M.Sc., Degree Examinations
 December 2017
 (Directorate of Distance Education)
 PHYSICS

Paper- I: DPA 510: Mathematical Methods and Classical Mechanics

Time: 3 hrs]
[Max. Marks: 75/85
Note:
Answer any FIVE questions from parts A, B and C without omitting any part (Common to All) Part - D is for the students whose max. marks is 85 .

PART - A

1. a) Define analytic function.
b) Express the divergence of a vector in a orthogonal curvilinear coordinates.
2. a) Obtain solution of the Legendre's equation using power series method.
b) Show that $2 x H_{n}(x)=2 n H_{n-1}(x)+H_{n+1}(x)$ for Hermite polynomials. $\quad(10+5)$
3. a) State Gauss's and Stoke's theorems and deduce Gauss's law of electrostatics from the divergence theorem.
b) Explain the concept of Gradient, divergence and Curl.

PART - B
4. a) Define Hermitian matrix and Skew - Hermitian Matrix. Give examples. Show that any arbitrary matrix can be written as the sum of a hermitian and skew hermitian matrix.
b) Define (Orthogonal) matrix and show that the given matrix is orthogonal

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

c) What is Unitary matrix? Show that the given matrix unitary.

$$
\left[\begin{array}{cc}
1 / \sqrt{2} & i / \sqrt{2} \\
-i / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

5. a) What are contravarient and covariant vectors? Explain each with examples.
b) Explain symmetric and antisymmetric Tensors.
6. a) State and prove Convolution theorem of fourier transform.
b) Write down the properties of fourier integrals.
c) Find the inverse Laplace transform of $\frac{1}{(s+1)\left(s^{2}+1\right)}$.

PART - C
7. Describe the mechanic of system of particles and obtain the conservations of linear momentum, angular momentum and energy of a particle.
8. a) What are generalized coordinates? Explain.
b) Derive the Lagranges equation of motion using D - Alemberts principles.
9. a) What are Poisson brackets? Explain the properties of Poisson brackets.
b) Derive the Hamilton's equations of motion.
$(10+5)$

PART - D

10. Answer any TWO of the following:

$2 \times 5=10$
a) State and prove Green's theorem.
b) Find the eigen values and normalized eigen vector of the matrix.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

c) State and explain Kepler's laws of planetary motion.

