https://www.kuvempuonline.com

M.Sc., (Previous), Degree Examination August / September 2009 Directorate of Distance Education

(Freshers)

Mathematics

Paper: PM 10.03: Analysis - II

Time: 3 Hours Max. Marks: 80

Note: Answer any FIVE full questions.

- 1. a. If the series $\sum a_n$, $\sum b_n$, $\sum c_n$ converges to A, B, C and $C_n = a_0 b_n + \cdots + a_n b_0$, then show that C = AB.
 - Prove that the Cauchy product of two absolutely convergent series converges absolutely.
 - Show that with example that the product of two convergent series need not converges.
- 2. a. Let $\sum a_n$ be a convergent series of real numbers but not absolutely and $-\infty \le \infty \le \beta \le \infty$. Then show that there exists a rearrangement $\sum \bar{a}_n$ with partial sums \bar{S}_n such that

$$\lim_{n \to \infty} \sup \tilde{S}_n = \beta, \quad \lim_{n \to \infty} \inf \tilde{S}_n = \infty$$

b. Prove that the convergence of $\sum a_n$, implies the convergence of

$$\sum \sqrt{\frac{a_n}{n}} \quad \text{if } a_n \ge 0.$$

- a. Give an example to show that limit of the integral need not be equal to the integral of the limit even if both are finite.
 - b. State and prove the weierstrass theorem for uniform convergence.
 - c. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- a. Show that there exits a real continuous function on the real line variety is nowhere differentiable with example.
 - b. Suppose {f_n} is a sequence of differentiable functions on [a,b] and such that {f_n (x_o)} converges for some point x_o on [a,b]. If {f'_n} converges uniformly on [a,b], then show that {f_n} → f on [a,b] uniformly and

$$\lim_{n \to \infty} f'_n(x) = f'(x), x \in [a,b]$$
08

- 5. a. Define the Trigonometric function C(x) and S (x). Show that
 - i) The function E is periodic with period 2 π i
 - ii) The function C and S are periodic with period 2 π .
 - iii) If z is a complex number with |z| = I, there is a unique t in [0, 2π] such that E (it)= z.
 - b. Let $f(x) = \begin{cases} e^{-1/x^2} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$. Prove that f has derivatives of all orders at x=0

and that $f^{(n)}(0) = 0$ for $n = 1, 2, 3, \dots$

- 6. a. If f(x) and g(x) be two positive functions such that $f(x) \le g(x)$, $x \in [a,b]$, then show that
 - ii) $\int_{a}^{b} f \, dx$ converges if $\int_{a}^{b} g \, dx$ converges
 ii) $\int_{a}^{b} g \, dx$ diverges if $\int_{a}^{b} f(x)$ diverges.
 - Define Beta and Gamma functions. Prove that Lagendre's duplicate formula. 08
- a. Suppose f maps an openset EC Rⁿ in to R^m and f is differentiable at a point x ∈ E. Then show that the partial derivatives (D_i f_i) (x) exist and

$$f'(x) e_j = \sum_{i=1}^{m} (D_{ji})(x) u_{ii} (1 \le j \le n).$$

10

https://www.kuvempuonline.com

- b. If u = f(x,y) is a homogeneous function of degree n, then show that $x \frac{\delta u}{\delta x} + y \frac{\delta u}{\delta v} = nu.$
- 8. State and prove the inverse function theorem.

. . .