DPA - 520 (Math)

M.Sc. Mathematics (Previous) Examination, July /August 2011 (Directorate of Distance Education)
Paper : PM 10-02 : ANALYSIS - I

Time : 3 Hours
Max. Marks: 70/80

> Instructions : 1) Students who have attended $\mathbf{3 0}$ Marks IA Scheme will have to answer for total of 70 marks.
> 2) Students who have attended $\mathbf{2 0}$ Marks IA Scheme will have to answer for total of $\mathbf{8 0}$ Marks.
> 3) Answer any FIVE Questions from Section - A. Each question carries $\mathbf{1 4}$ marks (for both $70 / 80$ Marks Schemes) and Q. No. $\mathbf{9}$ in Section - B is compulsory for 80 Marks Scheme.

SECTION - A

1. a) Let $x, y \in R^{\prime}, x>0$. Show that there is a positive integer n such that $n x>y$. 8
b) Show that (x, y) contains infinitely many irrationals.
2. a) If $\left\{E_{n}\right\}$ is a sequence of countable sets, show that $\bigcup_{n=1}^{\infty} E_{n}$ is countable.
b) Show that $[0,1]$ is uncountable.
3. a) State and prove the Heine-Borel theorem.
b) Show that R^{\prime} is connected. 7
4. a) Let X and Y be metric spaces, $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be continuous, then prove that f is uniformly continuous.
b) Show that $\lim _{\mathrm{n} \rightarrow \infty}\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}=\mathrm{e}$. Further show that e is irrational.
c) Prove that $\sum \frac{1}{\mathrm{n}^{\mathrm{p}}}$ is convergent if $\mathrm{p}>1$ and diverges if $\mathrm{p}<1$.
5. a) State and prove the generalized mean value theorem.
b) Let $\mathrm{f}: \mathrm{R}^{\prime} \rightarrow R^{\prime}$ be differentiable, $\mathrm{f} \neq 0$ and $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})\left(\mathrm{x}, \mathrm{y} \in \mathrm{R}^{\prime}\right)$. Show that $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{Ax}}, A$ is constant.
6. a) Let f be bounded on $[a, b]$, α increasing on $[a, b]$. Show that $f \in R(\alpha)$ on $[a, b]$ iff \exists a partition p of $[\mathrm{a}, \mathrm{b}] \ni \mathrm{S}_{\mathrm{p}}-\mathrm{s}_{\mathrm{p}}<\in[\forall \in>0]$.
b) If $|f| \in R(\alpha)$ on $[a, b]$, does $f \in R(\alpha)$ on $[a, b]$? Prove your claim.
7. a) Let $f \in R(\alpha)$ on [a, b], $m \leq f \leq M, \phi$ continuous on $[m, M]$. Show that $\phi \circ f \in R(\alpha)$ on $[a, b]$.
b) If $f_{1}, f_{2} \in R(\alpha)$ on $[a, b]$, show $f_{1} \circ f_{2} \in R(\alpha)$ on $[a, b]$.
8. a) Show that a continuous function on $[a, b]$ need not be of bounded variation on [a, b].
b) On $[0,1]$, let $f(x)=\left\{\begin{array}{cc}x^{2} \sin \frac{1}{x}, & 0<x \leq 1 \\ 0, & x=0\end{array}\right.$, then show that $f \in B V[0,1]$.
SECTION - B
9. a) If $f: X \rightarrow Y$ is continuous, where X is compact then prove that $f(X)$ is compact.
b) Show that $\log \left(1+x^{2}\right)$ is uniformly continuous on R^{\prime}.
