Q.P. Code - 15631

Sixth Semester B.Sc. Degree Examinations, OCTOBER/NOVEMBER 2018

(Semester Scheme) (New Syllabus – 2014-15 onwards)

(SSF 530) Paper VII - MATHEMATICS

Time : 3 Hours]

[Max. Marks: 80

Note: Answer ALL questions.

I. Answer any TEN of the following:

 $10 \times 2 = 20$ marks

https://www.kuvempuonline.com

- 1. In a vector space V(F), prove that $C = \vec{o} \Rightarrow either C = 0$ or $x = \vec{o}$.
- 2. Prove that the subset $W = \{(x,y,z)/\sqrt{2} | x = \sqrt{3} | y \}$ of the vector space $V_3(R)$ is a subspace of $V_3(R)$.
- 3. For what value of 'K', the vectors (-4, -3, -2), (-1, K, 1) and (2, 3, 4) are linearly dependent.
- 4. If $T: V \to W$ is a linear transformation, then show that

$$T(0) = 0^1$$
 when $0 = zero\ vector\ of\ V$ and $0^1 = zero\ vector\ of\ W$

5. Find the matrix of the linear transformation,

$$T_1V_2(R) \rightarrow V_3(R)$$
 defined by $T(x,y) = (x + 2y, 2x, x - 3y)$

- 6. In an Euclidean vector space, prove that $|x \beta| \le |x| |\beta|$
- 7. Prove that the inter section of two convex sets is also a convex set.
- 8. Draw the graph and find the solution set for the inequality $-1 \le y \le 2$ in R.
- 9. Define Degenerate solution of LPP.
- 10. If $P = \{0, \frac{1}{3}, \frac{2}{3}, 1\}$ is a partition of [0, 1], find
 - U(p, f) and L(p, f) for the function of f(x) = x.
- State Darboux theorem.
- 12. Prove that the lower Reimann integral cannot exceed the upper Reimann integral.

https://www.kuvempuonline.com

O.P. Code - 15631

II. Answer any THREE of the following:

 $3 \times 5 = 15 \text{ marks}$

- Prove that the intersection of two subspaces of a vector space is again a subspace and give an example to show "The Union of two subspaces of a vector space is need not be a subspace".
- 2. Express the polynomial $V = 5x^2 9x 5$ as a linear combination of the polynomials $V_1 = 4x^2 + x + 2$, $V_2 = 3x^2 x 1$, $V_3 = 5x^2 2x + 3$.
- 3. In $V_3(Z_3)$ how many vectors are spanned by (2, 1, 1) and (1, 2, 2).
- 4. Prove that the set $\{\alpha_1, \alpha_2, ---\alpha_n\}$ of non zero vectors is linearly dependent iff some vector α_k is a linear combination of its preceding vectors.
- 5. Find the basis and dimesion of the subspace spanned by $S = \{(1,1,1), (2,1,2), (1,0,1), (5,3,5)\}$ in $V_3(R)$.

III. Answer any THREE of the following:

https://www.kuvempuonline.com

 $3 \times 5 = 15$ marks

- 1. Show that the transformation $T: V_2(R) \to V_2(R) \text{ defind by } T(x,y) = (x\cos\theta y\sin\theta, x\sin\theta + y\cos\theta. \text{ Is linear.}$
- 2. Given $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{pmatrix}$. Find the linear transformation $T: V_3(R) \to V_2(R)$ relative to the bases $B_1 = \{(1.1.1), (1.2.3), (1.0.0)\}$ & $B_2 = \{(1.1), (1.-1)\}$.
- 3. If $T: V \to W$ is a linear transformations, then prove that T is one one iff $N(T) = \{0\}$ where 0 is zero vector of V. https://www.kuvempuonline.com
- 4. State and prove Rank Nullity theorem.
- 5. Apply Gram Schmidt process to orthonormalize the basis {(1, 0, 0), (1, 1, 1), (1, 2, 3)}.

IV. Answer any THREE of the following:

 $3 \times 5 = 15$ marks

- 1. Show that the set $S = \{(x_1, x_2) | 9x_1^2 4x_2^2 \le 36\}$ is a convex set
- 2. Find the basic and basic feasible solution for the system,

$$x_1 - x_2 - 2x_3 = 9$$
, $3x_1 - 2x_2 - 5x_3 = 22$

Q.P. Code - 15631

Two food stuff A and B have three vitamins V₁, V₂ and V₃ as follows.

Food Stuff	V ₁ (mg)	V ₂ (mg)	V ₃ (mg)
A	1	100	10
В	1	10	100

Minimum daily requirement of these vitamins are 1 mg, 50 mg and 10 mg respectively. If the cost of food stuff A is Rs 2 and that of B is Rs 3, find the minimum cost of diet that would supply the body at least minimum requirements of each vitamin by graphical method.

4. Max;
$$Z = 2x - 3y$$

Sub to
$$x-y \le 30$$

 $x-y \ge 0$

$$0 \le x \le 20$$

 $0 \le y \le 12$ by using graphical method.

5. Max;
$$f = 4x - 2y - z$$

https://www.kuvempuonline.com

Sub to
$$x-y-z \le 3$$

 $2x+2y-z \le 4$
 $x-y \le 0$

 $x, y, z \ge 0$ by using simplex method.

V. Answer any THREE of the following:

 $3 \times 5 = 15$ marks

- 1. If P^* is the refinement of P then prove that $U(P^*,f) \leq U(P,f)$
- 2. Show that f(x) = 3x + 1 is R-integrable over [1, 2] and hence deduce $\int_1^2 f(x) dx = \frac{11}{2}$
- 3. Prove that every continuous function is R-integrable.
- 4. If $f(x) = e^x$, compute $\int_0^1 f(x) dx$ by using integration as limit of sum.
- 5. Show that $f(x) = (-1)^{r-1}$ where $\frac{1}{r-1} \le x \le \frac{1}{r}$, r = 1, 2 - is R-integrable over [0,1] and $\int_0^1 f(x) dx = \log 4 1$.