O.P. Code - 15422

Fourth Semester B.Sc. Degree Examination, APRIL/MAY 2018

(Semester Scheme – Before 2014-15 Syllabus)

(SSD 530) Paper IV - MATHEMATICS

Time : 3 Hours]

[Max. Marks: 80

Note: Answer ALL questions.

I. Answer any TEN of the following:

 $10 \times 2 = 20 \text{ marks}$

nttps;//www.kuvempuonline.com

- 1. Define commutative Ring.
- 2. In a ring R show that $a \cdot 0 = 0 \cdot a = 0 \ \forall a \in R$.
- Define sub-ring of a ring.
- 4. Show that Z is not an ideal of the ring $(Q, +, \cdot)$.
- 5. Show that the only idempotent elements of an integral domain are 0 and 1.
- 6. Find all the units of Z_8 .
- 7. Evaluate $\lim_{n\to\infty} (\sqrt{n+1} \sqrt{n})$.
- 8. Examine the behaviour of the sequence whose nth term is given by $S_n = n \cdot \sin \left[\frac{\pi}{n} \right]$.
- 9. Define a bounded sequence and give an example.
- 10. Test the convergence of the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$
- 11. Test the absolute convergence of the series $1 \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \frac{1}{\sqrt{4}} + \cdots$
- 12. Test the convergence of the series $\sum_{n=0}^{\infty} \left[\frac{n}{n+1} \right]^{n^2}$

Q.P. Code - 15422

II. Answer any THREE of the following:

 $3 \times 5 = 15$ marks

- 1. Show that the intersection of any two sub rings of a ring R is again a sub ring of R.
- 2. Show that every finite integral domain is a field.
- 3. Prove that a ring R has no zero divisors if and only if the cancellation laws hold in R.
- 4. Prove that the set $S = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}, a, b \in Z \right\}$ is a right ideal of the ring R of 2×2 matrices over Z. Show that it is not left ideal.
- 5. Find all the principal ideals of the ring $R = \{0, 1, 2, 3, 4, 5\}$ with respect to $+_6$ and \times_6 .

III. Answer any THREE of the following:

 $3 \times 5 = 15$ marks

- 1. If f is a homomorphism of a ring R onto a ring R' with Kernel K, then prove that f(R) is homomorphic to factor ring R/K.
- 2. If $f : R \to R'$ is a homomorphism from the ring R into R', then show that
 - (a) f(0) = 0' where 0, 0' are zeros of R and R'
 - (b) $f(-a) = -f(a) \forall a \in R$

nttps://www.kuvempuonline.com

- 3. Let $N(\alpha) = a^2 3b^2$ where $\alpha = a + b\sqrt{3} \in z\left[\sqrt{3}\right]$ then prove that
 - (a) $N(\alpha \cdot \beta) = N(\alpha) \cdot N(\beta) \ \forall \ \alpha, \ \beta \in z |\sqrt{3}|$
 - (b) α is a unit iff $N(\alpha) = \pm 1$
- 4. Find the GCD of x^{18} 1 and x^{33} 1.
 - 5. Test for rational roots of the polynomial $3x^3 + x^2 + x 2$.

Q.P. Code - 15422

Answer any THREE of the following:

 $3 \times 5 = 15 \text{ marks}$

- Show that every convergent sequence is bounded. 1.
- If $\{x_n\}$ and $\{y_n\}$ be two convergent sequences and let $\lim_{n\to\infty}x_n=l$ and $\lim_{n\to\infty}y_n=m$ then 2. show that $\lim_{n\to\infty} \left\{ \frac{x_n}{u_n} \right\} = \frac{l}{m}$, where $m \neq 0$.
- Show that the sequence $x_n = \frac{3n+4}{2n+1}$ is monotonic decreasing and bounded and show 3. that $\lim_{n\to\infty} x_n = \frac{3}{2}$.
- Test the convergence of the sequence whose nth term is given by (i) $\left(\frac{n+1}{n-1}\right)^n$, $\frac{n+1}{n-1}$.

 Show that the sequence $\{S_n\}$ where $S_1=1$ and $S_n=\sqrt{2+S_{n-1}}$, $\forall n\geq 2$ is convergent and converges to 2.

 Answer any THREE of the following:

 Discuss the convergence of the series $\frac{1}{1\cdot 4}+\frac{1}{2\cdot 5}+\frac{1}{3\cdot 6}+\dots$

https://www.kuvempuonline.com

- 1.
- Test the convergence of the series $\frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \dots$ 2.
- State and prove Cauchy's root test. 3.
- Test the convergence of the series $x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots$ 4.
- Sum to infinity the series $1 + \frac{1}{5} + \frac{1 \cdot 3}{5 \cdot 10} + \frac{1 \cdot 3 \cdot 5}{5 \cdot 10 \cdot 15} + \dots$ 5.