Third Year B.Sc. Degree Examination

SEPTEMBER/OCTOBER 2013

(Directorate of Distance Education)

Physics

(DSC 211) Paper IV – NUCLEAR PHYSICS, SOLID STATE PHYSICS AND ELECTRONICS

Time: 3 Hours

[Max. Marks: 75/85

Instructions to Candidates:

- 1) Students who have attended **25** marks **I-A** scheme will have to answer for total of **75** marks.
- 2) Students who have attended 15 marks I-A scheme will have to answer for total of 85 marks.
- 3) Section-E is compulsory for 85 marks scheme only.

SECTION - A

I. Answer **ALL** questions:

 $10 \times 1 = 10$

- 1. Define nuclear reaction cross-section.
- 2. State Geiger-Nuttal law.
- 3. What are the components of secondary cosmic rays?
- 4. Which quark combination make up the antiproton?
- 5. What is lattice point group?
- 6. State superposition theorem.
- 7. What are phonons?
- 8. State Barkhausen criterion.
- 9. What are class-B amplifiers?
- 10. Define modulation index.

SECTION - B

II. Answer any FIVE questions:

 $5 \times 3 = 15$

- 11. Explain Meson theory of nuclear forces.
- 12. What are the similarities between a liquid drop model and a nucleus?
- 13. Discuss the contribution of electron to the specific heat of metals using quantum free electron theory.
- 14. Debye temperature of a solid is 3000 K. Calculate the specific heat at room temperature.
- 15. Describe the construction and working of a phase shift oscillator with a neat circuit diagram.
- 16. Draw the logic circuit for the Boolean expression $Y = \overline{A} \cdot B + A \cdot \overline{B}$, using basic logic gates.
- 17. Explain the principles of T.V. transmission and reception using block diagrams.

SECTION - C

III. Answer any FIVE questions:

 $5 \times 6 = 30$

- 18. Explain the construction and working of a cyclotron with theory.
- 19. Explain:
 - (a) Production of cosmic ray showers
 - (b) C-N nuclear fusion reaction.
- 20. Explain the concept of free electrons. Obtain an expression for electrical conductivity based on classical free electron theory.
- 21. Obtain an expression for concentration of charge carriers and discuss the position of Fermi level in p-type semiconductor.
- 22. Explain:
 - (a) Meissner effect exhibited by superconductors
 - (b) Type-I and Type-II superconductors

- 23. What are AC and DC loadlines? Explain the working of zener diode as voltage regulator.
- 24. Explain the principle and working of superheterodyne receiver. What are its advantages?

SECTION - D

IV. Answer any TWO questions:

 $2 \times 10 = 20$

- 25. (a) Derive an expression for number of daughter atoms of a radioactive element at a given instant of time. Discuss secular and trancient equilibrium.
 - (b) The Q-value of $Na^{23}(n_1\alpha)F^{20}$ reaction is -5.4 MeV. Determine the threshold energy of the neutrons for this reaction. Given mass of neutron = 1.00866 amu and Mass of $Na^{23} = 22.99097$ amu. **7 + 3**
- 26. (a) Explain the principle, construction, working and characteristics of a G-M counter.
 - (b) In a nuclear reactor, the reactor is developing energy at the rate of 1500 kW. How many atoms of U²³⁵ undergo fission per second? How many kgm of U²³⁵ would be used in 1000 hours of operation. Assuming that on an average energy of 200 MeV is released per fission. **6 + 4**
- 27. (a) Explain the origin of dia, para and ferro magnetism on the basis of electronic structure of atoms and their characteristic features.
 - (b) Give the theory of Hall effect and its applications.

5 + 5

- 28. (a) What are flipflops? Explain the operation of R-S flip flop using logic diagram and truth table. What are its demerits?
 - (b) Find the current through the $12-\Omega$ resistor of the circuit by applying Thevenin's theorem. **6 + 4**

P.T.O.

SECTION - E

V. Answer any **ONE** question:

 $1 \times 10 = 10$

(Compulsory question for 85 marks scheme only)

- 29. (a) Derive four factor formula.
 - (b) A quantity of ore is found to contain 1 kg of uranium-238, the half life of U^{238} is 4.5×10^9 years and that of radium of amu 226 is 1620 years. Find the mass of the radium in the ore considering them in radioactive equilibrium. **6 + 4**
- 30. (a) Obtain an expression for Fermi energy and average energy at absolute zero temperature.
 - (b) Find the Miller indices of a plane which is parallel to the Y-axis and cuts intercepts of 2 and 1/3, respectively along x and z axes. 8 + 2