Q.P. Code - 50824

Third Year B.Sc. Degree Examination SEPTEMBER/OCTOBER 2013

 (Directorate of Distance Education)

 (Directorate of Distance Education)
 (DSC 231) Paper IV - MATHEMATICS

Time : 3 Hours]
[Max. Marks : 90
Instructions to Candidates:
Answer any SIX, choosing atleast TWO questions from each Part.
PART - A

1. (a) (i) Evaluate $\int_{c}(3 x+y) d x+(2 y-x) d y$ along the curve $y=x^{2}+1$ from $(0,1)$ to $(3,10)$

2
(ii) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}}$.

2
(b) Evaluate $\int_{C}(x+y+z) d S$ where C is the line joining the points $(1,2,3)$ and $(4,5,6)$.
(c) Show that $\int_{C}\left(4 x y-3 x^{2} z^{2}\right) d x+2 x^{2} d y-2 x^{3} z d z$ is independent of the path joining from $(3,-1,1)$ to $(0,1,2)$ and hence evaluate.
2. (a) (i) Evaluate $\int_{0}^{2} \int_{0}^{x^{2}} x\left(x^{2}+y^{2}\right) d y d x$.
(ii) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} d x d y d z$.
(b) Find the surface area of the cylinder $x^{2}+y^{2}=4$ cut by the cylinder $x^{2}+z^{2}=4$.
(c) Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Q.P. Code - 50824

3. (a) (i) Evaluate $\int_{0}^{\infty} e^{-4 x} x^{3 / 2} d x$.
(ii) Prove that $\beta(m, n)=\int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} d y$.
(b) Evaluate $\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} d x$.

5
(c) Show that $\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x=\beta(m, n)$.

6
4. (a) (i) Define Lower Riemann integral and upper Riemann integral of f over $[a, b]$.
(ii) State the criterion for the condition of integrability.
(b) State and prove Darboux Theorem.
(c) Show that the function $f(x)=x^{2}$ is integrable over $[a b]$ and hence show that $\int_{a}^{b} x^{2} d x=\frac{b^{3}-a^{3}}{3}$.
PART - B
5. (a) (i) Find the part of complimentary function of

$$
x y^{\prime \prime}+2(x+1) y^{\prime}+(x+2) y=(x+2) e^{2 x}
$$

(ii) Find the Wronskian W for the differential equation

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\cos \left(e^{-x}\right)
$$

(b) Solve $x^{2} y^{\prime \prime}+x y^{\prime}-y=2 x^{2}(x>0)$ given that $\frac{1}{x}$ is a part of complimentary function.
(c) Solve $\frac{d^{2} y}{d x^{2}}+(2 \cos x+\tan x) \frac{d y}{d x}+\left(\cos ^{2} x\right) y=\cos ^{4} x \quad$ by changing the independent variable.

Q.P. Code - 50824

6. (a) (i) Show that $\cos x y^{\prime \prime}+2 \sin x y^{\prime}+3 \cos x y=\tan ^{2} x$ is exact.
(ii) Solve $\frac{d x}{z^{2} y}=\frac{d y}{z^{2} x}=\frac{d z}{x y^{2}}$.

2
(b) Solve $(1-x) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=(1-x)^{2}$ where $x \neq 1$ by the method of 5 variation of parameters.
(c) Show that $x^{2}(1+x) \frac{d^{2} y}{d x^{2}}+2 x(2+3 x) \frac{d y}{d x}+2(1+3 x) y=0$ is exact and solve it.
7. (a) (i) Verify the condition for integrability for

$$
\begin{equation*}
(y z+2 x) d x+(z x-2 z) d y+(x y-2 y) d z=0 \tag{2}
\end{equation*}
$$

(ii) Form the partial differential equation by eliminating the arbitrary constants a and b from the equation $(x-a)^{2}+(y-b)^{2}+z^{2}=K^{2}$.
(b) Verify the condition for integrability and solve

$$
\begin{equation*}
3 x^{2} d x+3 y^{2} d y-\left(x^{3}+y^{3}+e^{2 z}\right) d z=0 \tag{5}
\end{equation*}
$$

(c) Solve $\left(y^{3} x-2 x^{4}\right) p+\left(2 y^{4}-x^{3} y\right) q=q z\left(x^{3}-y^{3}\right)$.
8. (a) (i) Find the Fourier coefficient a_{0} for the function $f(x)=e^{-a x}$ in the interval $-\pi<x<\pi$.

2
(ii) Obtain the Half range sine series for the function $f(x)=x(\pi-x)$ over the interval $(0, \pi)$.
(b) Find the Fourier series of the function

$$
f(x)=\left\{\begin{array}{l}
1 \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2} \tag{5}\\
-1 \text { for } \frac{\pi}{2}<x<\frac{3 \pi}{2}
\end{array} \text { and } f(x+2 \pi)=f(x) .\right.
$$

(c) Expand the function $f(x)=\left\{\begin{array}{l}1+2 x \text { in }-3<x \leq 0 \\ 1-2 x \text { in } 0 \leq x<3\end{array}\right.$ as a Fourier series and deduce that $\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.

