Q.P. Code - 50722

Second Year B.Sc. Degree Examination

OCTOBER/NOVEMBER 2014

(Directorate of Distance Education)

(DSB 230) Paper II - MATHEMATICS

Time: 3 Hours] [Max. Marks: 90

Instructions to Candidates:

Answer any **SIX** full questions of the following choosing atleast **ONE** from each Part.

PART - A

1. (a) (i) Find the order and degree of differential equation $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^4 = e^{4x}.$

(ii) Solve
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 0$$
.

(b) Solve
$$\frac{dy}{dx} = \frac{6x - 2y - 7}{3x - y + 4}$$
.

(c) Solve
$$y(2x-y+1)dx + x(3x-4y+3)dy = 0$$
.

2. (a) (i) Solve $P^2 - 3P + 2 = 0$.

(ii) Find the general and singular solution of $y = xP + P^2$.

(b) Solve $16x^2 + 2P^2y - P^3x = 0$.

(c) Find orthogonal trajectories of the family $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, where ' λ ' is being a parameter.

1 **P.T.O.**

Q.P. Code - 50722

PART - B

3. (a) (i) Solve $(D^2 + 9)y = \cos 3x$, where $D = \frac{d}{dx}$.

(ii) Solve
$$(4D^3 + 4D^2 + D)y = 0$$
, where $D = \frac{d}{dx}$.

(b) Solve
$$(D^4 - 18D^2 + 81)y = 36e^{3x}$$
, where $D = \frac{d}{dx}$.

(c) Solve
$$(D^2 - 4D + 3)y = 2xe^{3x}$$
, where $D = \frac{d}{dx}$.

4. (a) (i) Evaluate
$$\lim_{x \to 0} \frac{x \cdot \sin x}{x^3}.$$

(ii) Evaluate
$$\lim_{x \to 0} (\csc x - \cot x)$$
.

(c) Expand $\log(\sec x)$ upto the term containing x^6 using Maclaurin's series.

PART - C

5. (a) (i) Show that in a group G, $(a^{-1})^{-1} = a$.

(ii) Find the distinct generators of the cyclic group of order 15.

(b) Prove that every subgroup of a cyclic group is cyclic. 5

(c) State and prove Fermat's theorem.

6. (a) (i) Solve $x-6 < 2x-5 \le x-3$.

(ii) For any two real numbers x and y show that $|x-y| \ge |x| - |y|$. **2**

(b) Find the order of the permutation and find whether they are odd or even.

$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 5 & 1 & 7 & 2 & 8 & 3 & 9 & 6 \end{pmatrix}.$$

(c) Find the envelopes of family of lines $x \cdot \cos^3 \alpha + y \cdot \sin^3 \alpha = a$, where ' α ' is a parameter.

6

Q.P. Code - 50722

PART - D

- 7. (a) (i) Find whether the sequence $\left\{\frac{n}{n+1}\right\}$ is bounded or not.
 - (ii) Examine the nature of the sequence $\left\{ \left(\frac{n}{n+1} \right)^n \right\}$.
 - (b) If the sequence $\{x_n\}$ converges to l and $\{y_n\}$ converges to m then show that $\left\{\frac{x_n}{y_n}\right\}$ converges to $\frac{l}{m}$.
 - (c) Prove that every convergent sequence is bounded. **6**
- 8. (a) (i) Show that $\sum \frac{1}{(\log n)^n}$ series is convergent.
 - (ii) Verify whether series $1^2 + 2^2 + 3^2 + 4^2 + \cdots$ converges or not. **2**
 - (b) State and prove D'Alembert's Ratio test. 5
 - (c) Find sum to infinity of the series

$$1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \dots$$