First Year B.Sc. Degree Examinations
 December 2017

(Directorate of Distance Education)
MATHEMATICS
Paper - I: DSA 230: Mathematics
Time: 3 hrs
[Max. Marks: 90

Instructions to candidates:

Answer any SIX full questions of the following choosing at least one from each part.
PART - A

1. a) i) Find the remainder when $135 \times 74 \times 48$ is divided by 7 .
ii) If there exists integers x and y such that $a x+b y=1$ then prove that $(a, b)=1$
b) Solve the simultaneous congrunces $x \equiv 2(\bmod 3)$ and $x \equiv 3(\bmod 5)$.
c) Prove that the relation "Congruence modulo m " is an equivalence relation in the set of integers.
2. a) i) Define symmetric relation. Give an example.
ii) Let $A=\{-2,-1,0,1,2\}, B=\{0,1,4\}$ Define $f: A \rightarrow B$ by $f(x)=x^{2} \forall x \in A$, then prove that f is not one - one.
b) If $f: X \rightarrow Y$ is a function from X into Y then for subsets $A, B \in X$ and $C, D \in Y$ then prove that.
i) $f(A \cup B)=f(A) \cup f(B)$
ii) $f(A \cap B)=f(A) \cap f(B)$
c) If $f: A \rightarrow B$ is a bijective map then prove that $f^{-1}: B \rightarrow A$ is also a bijective map and is unique.

PART - B

3. a) i) Discuss the continuity of $f(x)=3 x^{2}+4 x-5$ at $x=1$.
ii) Find the $n^{t h}$ derivative of $a^{m x}$.
b) Examine the differentiability of the function

$$
f(x)=\left\{\begin{array}{lll}
x^{2}-1 & \text { if } & x \geq 1 \tag{5}\\
1-x & \text { if } & x<1
\end{array} \text { at } \quad x=1\right.
$$

c) If $y=\sin \left(m \sin ^{-1} x\right)$ then show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$.
4. a) i) Find $\frac{d s}{d x}$ for the curve $y=a \cosh (x / a)$
ii) Find the pedal equation of the curve $r^{n}=a^{n} \sin n \theta$
b) Show that the pair of curves $r=a(1+\cos \theta)$ and $r=a(1-\cos \theta)$ intersect orthogonally.
c) Show that the evoluate of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ is another cycloid.

PART - C

5. a) i) Find the equation of the plane passing through $(4,0,6)$ and parallel to the plane

$$
x+y+z=0 .
$$

ii) Find the equation of the plane passing through the points $(6,1,5),(-6,2,7)$ and (1, 2, 3) .
b) Find the equation of the plane passing through the point $(0,-4,15)$ and the line $x=1-9 t, y=2-3 t, z=-2+51 t$.
c) Find the mutual position of the lines l_{1} and l_{2} given by .
$l_{1}: x=1+t, y=2+3 t, z=8+7 t$
$l_{2}: x=3+4 s, y=5-2 s, z=13-14 s$
6. a) i) Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}+2 x-4 y-6 z+5=0$.
ii) Find the asymptotes of the curve $x^{2}+3 x y+2 y^{2}+3 x-2 y+1=0$
b) Find the position and nature of the double points of the curve $x^{3}+x^{2}+y^{2}-x-4 y+3=0$.
c) Find the volume generated by the revolution of ellipse $x=a \cos \theta$ and $y=b \sin \theta$ between $\theta=0$ and $\theta=\pi / 2$.

PART - D

7. a) i) Show that the following matrices are equivalent

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & -4 \\
2 & -3 & 1 & 2 \\
5 & 0 & -2 & 7
\end{array}\right] \text { and } B=\left[\begin{array}{cccc}
1 & 2 & -6 & -4 \\
9 & 8 & -20 & -9 \\
2 & -3 & -2 & 2
\end{array}\right]
$$

ii) Find the rank of the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 2 \tag{2+2}\\
2 & 3 & 5 & 1 \\
1 & 3 & 4 & 5
\end{array}\right]
$$

b) Find the inverse of the matrix by using elementary row operations.

$$
A=\left[\begin{array}{lll}
2 & 3 & 1 \tag{5}\\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]
$$

c) Solve completely the system of equations.

$$
\begin{equation*}
2 x-y+3 z=0, \quad 3 x+2 y+z=0, x-4 y+5 z=0 \tag{6}
\end{equation*}
$$

8. a) i) Evaluate $\int \frac{d x}{5-3 \cos x}$
ii) Evaluate $\int_{-\pi / 2}^{\pi / 2} \cos ^{6} x d x$
b) Evaluate $\int \frac{x d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}}$
c) Evaluate $\int_{0}^{\pi} x \sin ^{4} x \cos ^{6} x d x$
